Bild des Institutes mit dem Logo der Universität

Bo Chen's Homepage


 Bo Chen

bochen
Institut für Algebra und Zahlentheorie
Universität Stuttgart
Pfaffenwaldring 57
D-70569 Stuttgart
Germany

Email:   myname 'at' mathematik.uni-stuttgart.de
               (myname=bochen)
Büro:    V57-7.554
Tel.:      0711-685-65310

Sprechstunde: Freitags 10:00--11:00





Research Interests:


Teaching (assistant):


Papers and Preprints    

  1. Upper bound of Indecomposable modules with the same length in regular components  over generalized Kronecker quivers.  Bull. Sci. Math. 137 (2013), 730--746.
  2. The Gabriel-Roiter measure and representation types of quivers. Advance in Math. 231 (2012), 3323--3329.
  3. The GR segments for tame hereditary algebras.  J.Pure Appl. Algebra. 217 (2013), 1888--1894.
  4. Regular modules with preprojective Gabriel-Roiter submodules over $n$-Kronecker quivers.  J. Pure Appl. Algebra 215(2011), 3025--3037.
  5. The number of the Gabriel-Roiter measures admitting no direct predcessors over a wild quiver. J. Pure Appl. Algebra 215(2011), 2341--2351.
  6. The Gabriel-Roiter measure for  $\widetilde{A}\sb{n} II. Algebr. Represent. Theory 15 (2012), 901--920.
  7. The Gabriel-Roiter submodules of simple homogeneous modules. Proc. Amer. Math. Soc. 138(2010), 3415--3424.
  8. The number of Gabriel-Roiter submodules. J. Pure Appl. Algebra 214(2010), 1076--1081. 
  9. Regular modules and quasi-lengths over $3$-Kronecker quiver; using Fibonacci numbers. Arch. Math. 95(2010), 105--113.
  10. The Gabriel-Roiter measure for radical-square zero algebras.  Bull. Lond. Math. Soc. 41(2009), 16--26.
  11. The Gabriel-Roiter measure for $\widetilde{A}\sb{n}$.  J. Algebra 320(2008), 2891--2906.
  12. Comparison of Auslander-Reiten theory and Gabriel-Roiter measure approach to the categories of tame hereditary algebras.  Comm. Algebra 36(2008), 4186--4200.
  13. The Auslander-Reiten sequence ending at Gabriel-Roiter factor modules over tame hereditary algebras. J. Algebra Appl. 6(2007), 951--963.
  14. The Gabriel-Roiter measure for representation-finite hereditary algebras.  J. Algebra 309(2007), 292--317.

Othere Preprints

  1. General Gabriel-Roiter measure. (16.07.07)
  2. Nakayama algebras and $n$-cluster tilting objects. (16.06.08)
  3. A characterization of the sequence: 3 followed by the infinite Fibonacci word written using $3$ and $2$'s. (04.09.08)
Links

Research groups and mathsites

BiRep     StuttRep    BonnRep 

MathSciNet   MathArxiV
  History of Math

Online Translation

Deu-Eng       Mydict


Kept by Bo Chen, Last modified on 20.09.2014(Alle Angaben ohne gewähr)