On the U-module Structure of the Unipotent Specht Modules for Finite General Linear Groups

Qiong Guo
(joint work with Richard Dipper)

Gradings and Decomposition Numbers, Stuttgart
September 27, 2012
Basic setting

- q: a fixed power of some prime p.
- \mathbb{F}_q: finite field with q elements.
- K: a field such that $\text{char}(K) \neq p$ and $\sqrt{1} \in K$.
- $G = \text{GL}_n(q)$: group of invertible $n \times n$ matrices over \mathbb{F}_q, where $n \in \mathbb{N}$.

For $\lambda \vdash n$ (partition of n):
- Let $B \subseteq \mathcal{P}_\lambda$ be the corresponding parabolic subgroup,
- $K \mathcal{P}_\lambda$ the trivial $K \mathcal{P}_\lambda$-module.
- Let $M_{K}(\lambda) = \text{Ind}_{G \mathcal{P}_\lambda}^{G}(K \mathcal{P}_\lambda)$, the corresponding permutation module.
- The unipotent Specht module $S_{K}(\lambda)$ is a submodule of $M_{K}(\lambda)$ and for $K = \mathbb{C}$, $\{S_{\mathbb{C}}(\lambda) \mid \lambda \vdash n\}$ are precisely the irreducible constituents of $\text{Ind}_{G B}^{G}(C B)$.

Qiong Guo
On the U-module Structure of the Unipotent Specht Modules for Finite General Linear Groups
Basic setting

- q: a fixed power of some prime p.
- \mathbb{F}_q: finite field with q elements.
- K: a field such that $\text{char}(K) \neq p$ and $\sqrt{1} \in K$.
- $G = GL_n(q)$: group of invertible $n \times n$ matrices over \mathbb{F}_q, where $n \in \mathbb{N}$.

For $\lambda \vdash n$ (partition of n):

- Let $B \subseteq P_\lambda$ be the corresponding parabolic subgroup, K_{P_λ} the trivial K_{P_λ}-module.
Basic setting

- q: a fixed power of some prime p.
- \mathbb{F}_q: finite field with q elements.
- K: a field such that $\text{char}(K) \neq p$ and $\sqrt{1} \in K$.
- $G = GL_n(q)$: group of invertible $n \times n$ matrices over \mathbb{F}_q, where $n \in \mathbb{N}$.

For $\lambda \vdash n$ (partition of n):

- Let $B \subseteq P_\lambda$ be the corresponding parabolic subgroup, K_{P_λ} the trivial K_{P_λ}-module.
- Let $M_K(\lambda) = \text{Ind}^G_{P_\lambda}(K_{P_\lambda})$, the corresponding permutation module.
Basic setting

- q: a fixed power of some prime p.
- \mathbb{F}_q: finite field with q elements.
- K: a field such that $\text{char}(K) \neq p$ and $\sqrt{1} \in K$.
- $G = GL_n(q)$: group of invertible $n \times n$ matrices over \mathbb{F}_q, where $n \in \mathbb{N}$.

For $\lambda \vdash n$ (partition of n):

- Let $B \subseteq P_\lambda$ be the corresponding parabolic subgroup, KP_λ the trivial KP_λ-module.
- Let $M_K(\lambda) = \text{Ind}_{P_\lambda}^G(KP_\lambda)$, the corresponding permutation module.
- The unipotent Specht module $S_K(\lambda)$ is a submodule of $M_K(\lambda)$ and for $K = \mathbb{C}$, $\{S_\mathbb{C}(\lambda) \mid \lambda \vdash n\}$ are precisely the irreducible constituents of $\text{Ind}_{B}^{G}(\mathbb{C}_B)$.

Qiong Guo

On the U-module Structure of the Unipotent Specht Modules for Finite General Linear Groups
If we set $q \rightarrow 1$, $S_K(\lambda) = S^\lambda$, the Specht module for the symmetric group \mathfrak{S}_n.

Conjecture (Dipper-James, 1990)

There is a q-analogue of the standard basis theorem for G.

Those come with a natural integrally defined basis, called “standard basis”.

Theorem (Brandt-Dipper-James-Lyle, 2006)

DJ's conjecture holds for 2-part partitions.

Difficulty: The proof of this theorem is completely combinatorial and seems not work for general λ.

Goal

Reprove DJ's conjecture for 2-part partitions by using a method tightly connected to representation theory.
If we set $q \rightsquigarrow 1$, $S_K(\lambda) = S^\lambda$, the Specht module for the symmetric group \mathfrak{S}_n.

Conjecture (Dipper-James, 1990)

There is a q-analogue of the standard basis theorem for G. Those come with a natural integrally defined basis, called “standard basis”.
If we set \(q \sim 1 \), \(S_K(\lambda) = S^\lambda \), the Specht module for the symmetric group \(\mathfrak{S}_n \).

Conjecture (Dipper-James, 1990)

There is a \(q \)-analogue of the standard basis theorem for \(G \). Those come with a natural integrally defined basis, called “standard basis”.

Theorem (Brandt-Dipper-James-Lyle, 2006)

DJ’s conjecture holds for 2-part partitions.
If we set $q \rightarrow 1$, $S_K(\lambda) = S^\lambda$, the Specht module for the symmetric group \mathfrak{S}_n.

Conjecture (Dipper-James, 1990)

There is a q-analogue of the standard basis theorem for G. Those come with a natural integrally defined basis, called “standard basis”.

Theorem (Brandt-Dipper-James-Lyle, 2006)

DJ’s conjecture holds for 2-part partitions.

Difficulty: The proof of this theorem is completely combinatorial and seems not work for general λ.

Qiong Guo

On the U-module Structure of the Unipotent Specht Modules for Finite General Linear Groups
Motivation

If we set $q \sim 1$, $S_K(\lambda) = S^\lambda$, the Specht module for the symmetric group \mathfrak{S}_n.

Conjecture (Dipper-James, 1990)

There is a q-analogue of the standard basis theorem for G. Those come with a natural integrally defined basis, called "standard basis".

Theorem (Brandt-Dipper-James-Lyle, 2006)

DJ’s conjecture holds for 2-part partitions.

Difficulty: The proof of this theorem is completely combinatorial and seems not work for general λ.

Goal

Reprove DJ’s conjecture for 2-part partitions by using a method tightly connected to representation theory.
Normal form of an \((m \times n)\)-matrix

Let \(\lambda = (n - m, m) \vdash n\). Choose an \(m\)-dimensional \(\mathbb{F}_q\)-vector space \(V_1\) in \(V = \mathbb{F}_q^n\). List a basis of \(V_1\) as \(m \times n\)-matrix and then row reduce it to a unique normal form.

\[
\begin{bmatrix}
\ast & \ast & 1 & 0 & 0 & 0 & 0 \\
\ast & \ast & 0 & 1 & 0 & 0 & 0 \\
\ast & \ast & 0 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

Example

We label the rows by column indices of “last 1’s”. Write \(\text{tab}(L) = 1 2 4 7 3 5 6 \in R_{\text{Std}}(\lambda)\) where \(\lambda = (4, 3)\).
Normal form of an \((m \times n)\)-matrix

Let \(\lambda = (n - m, m) \vdash n\). Choose an \(m\)-dimensional \(\mathbb{F}_q\)-vector space \(V_1\) in \(V = \mathbb{F}_q^n\). List a basis of \(V_1\) as \(m \times n\)-matrix and then row reduce it to a unique normal form.

Example

\[
L = \begin{pmatrix}
 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 * & * & 1 & 0 & 0 & 0 & 0 \\
 * & * & 0 & * & 1 & 0 & 0 \\
 * & * & 0 & * & 0 & 1 & 0
\end{pmatrix}.
\]

We label the rows by column indices of “last 1’s”. Write

\[
\text{tab}(L) = \begin{pmatrix}
 1 & 2 & 4 & 7 \\
 3 & 5 & 6 \\
\end{pmatrix} \in \mathbb{RStd}(\lambda) \text{ where } \lambda = (4, 3).
\]
Different description of a basis of $M_K(\lambda)$

Definition

$$\mathcal{X}_{m,n} = \{ \text{row reduced } m \times n - \text{matrices} \}$$

$$\mathcal{F}(\lambda) = \{ 0 \subseteq V_1 \subseteq V = \mathbb{F}_q^n | \dim_{\mathbb{F}_q} V_1 = m \}$$
Different description of a basis of $M_K(\lambda)$

Definition

\[\mathcal{X}_{m,n} = \{ \text{row reduced } m \times n - \text{matrices} \} \]

\[\mathcal{F}(\lambda) = \{ 0 \subseteq V_1 \subseteq V = \mathbb{F}_q^n \mid \dim_{\mathbb{F}_q} V_1 = m \} \]

G acts on $\mathcal{X}_{m,n}$ by setting $L \circ g$ for $L \in \mathcal{X}_{m,n}, g \in G$ to be the row reduced matrix obtained from Lg. The resulting G-permutation module is exactly $M_K(\lambda) = \text{Ind}_P^G K_{P\lambda}$.

Remark: $\mathcal{X}_{m,n}$ is a basis of $M_K(\lambda)$. For $\lambda \vdash n$ arbitrary there is a similar description of a basis of $M_K(\lambda)$ by row reduced matrices.
Different description of a basis of $M_K(\lambda)$

Definition

\[\mathcal{X}_{m,n} = \{ \text{row reduced } m \times n \text{ - matrices} \} \]

\[\mathcal{F}(\lambda) = \{ 0 \subseteq V_1 \subseteq V = \mathbb{F}_q^n \mid \dim_{\mathbb{F}_q} V_1 = m \} \]

G acts on $\mathcal{X}_{m,n}$ by setting $L \circ g$ for $L \in \mathcal{X}_{m,n}$, $g \in G$ to be the row reduced matrix obtained from Lg. The resulting G-permutation module is exactly $M_K(\lambda) = \text{Ind}^G_{P_{\lambda}} K_{P_{\lambda}}$.

Remark

- $\mathcal{X}_{m,n}$ is a basis of $M_K(\lambda)$.
Definition

\[\mathcal{X}_{m,n} = \{ \text{row reduced } m \times n - \text{matrices} \} \]

\[\mathcal{F}(\lambda) = \{ 0 \subseteq V_1 \subseteq V = \mathbb{F}_q^n | \dim_{\mathbb{F}_q} V_1 = m \} \]

\(G \) acts on \(\mathcal{X}_{m,n} \) by setting \(L \circ g \) for \(L \in \mathcal{X}_{m,n}, g \in G \) to be the row reduced matrix obtained from \(Lg \). The resulting \(G \)-permutation module is exactly \(M_K(\lambda) = \text{Ind}_{P_\lambda}^G K_{P_\lambda} \).

Remark

- \(\mathcal{X}_{m,n} \) is a basis of \(M_K(\lambda) \).
- For \(\lambda \vdash n \) arbitrary there is a similar description of a basis of \(M_K(\lambda) \) by row reduced matrices.
Define $\Phi_m : M_K(\lambda) \rightarrow M_K(\mu) : U \mapsto \sum_{X \subseteq U, \dim X = m-1} X$, where

$\dim U = m$ and $\mu = (n - m + 1, m - 1)$.
Define $\Phi_m : M_K(\lambda) \to M_K(\mu) : U \mapsto \sum_{X \subseteq U} X$, where $\dim U = m$ and $\mu = (n - m + 1, m - 1)$.

Lemma

For $K = \mathbb{C}$, we have $S_{\mathbb{C}}(\lambda) = \ker \Phi_m$.
Define $\Phi_m : M_K(\lambda) \rightarrow M_K(\mu) : U \mapsto \sum_{X \subseteq U} X$, where $\dim U = m$ and $\mu = (n - m + 1, m - 1)$.

Lemma

For $K = \mathbb{C}$, we have $S_C(\lambda) = \ker \Phi_m$.

Strategy:

- **Step 1: Inspect** $\text{Res}_U^G M_K(\lambda)$.
Define $\Phi_m : M_K(\lambda) \rightarrow M_K(\mu) : U \mapsto \sum_{X \subseteq U} X$, where $\dim U = m$ and $\mu = (n - m + 1, m - 1)$.

Lemma

For $K = \mathbb{C}$, we have $S_\mathbb{C}(\lambda) = \ker \Phi_m$.

Strategy:

- **Step 1:** Inspect $\text{Res}^G_U M_K(\lambda)$.
- **Step 2:** Using Φ_m to investigate $\text{Res}^G_U S_K(\lambda)$.
Define $\Phi_m : M_K(\lambda) \to M_K(\mu) : U \mapsto \sum_{X \subseteq U} X$, where
\[
\dim U = m \text{ and } \mu = (n - m + 1, m - 1).
\]

Lemma

For $K = \mathbb{C}$, we have $S_\mathbb{C}(\lambda) = \ker \Phi_m$.

Strategy:

- **Step 1:** Inspect $\text{Res}_U^G M_K(\lambda)$.
- **Step 2:** Using Φ_m to investigate $\text{Res}_U^G S_K(\lambda)$.

Advantage:

$|U| = p$-power, $\text{char}(K) \neq p \Rightarrow KU$ is semisimple.
Note that each row reduced $m \times n$-matrix determines an unique row standard λ-tableau.

Definition

For $t \in \text{RStd}(\lambda)$, denote the set of all the row reduced matrices which determine the same row standard λ-tableau t by $X_t = \{ L \in X_{m,n} | \text{tab}(L) = t \}$ and set $M_t = KX_t$.

t-batch M_t of $MK(\lambda)$
Note that each row reduced $m \times n$-matrix determines an unique row standard λ-tableau.

Definition

For $t \in \mathbb{R}_{\text{Std}}(\lambda)$, denote the set of all the row reduced matrices which determine the same row standard λ-tableau t by

$$\mathcal{X}_t = \{L \in \mathcal{X}_{m,n} | \text{tab}(L) = t\}$$

and set $\mathcal{M}_t = K \mathcal{X}_t$.

The \mathcal{M}_t comes up naturally:

Lemma

$$\text{Res}_U^G \, M_K(\lambda) \cong \bigoplus_{w \in D_\lambda} \text{Ind}_{p_{\lambda \cap U}}^U K \stackrel{t=t^\lambda w}{\longrightarrow} \bigoplus_{t \in \mathbb{R}_{\text{Std}}(\lambda)} \mathcal{M}_t.$$

\mathcal{M}_t is called the t-batch of $M_K(\lambda)$.

Qiong Guo
On the U-module Structure of the Unipotent Specht Modules for Finite General Linear Groups
Make \mathcal{X}_t into an abelian p-group $(\mathcal{X}_t, \Diamond)$ by defining $L_1 \Diamond L_2$ as adding L_1 and L_2 in all columns except those, which contain a last one, keeping those unchanged. $K(\mathcal{X}_t, \Diamond)$ is commutative and semisimple, since $\text{char}(K) \neq p$ and $|\mathcal{X}_t|=$power of q. So:
Idempotent basis of M_t

Make X_t into an abelian p-group (X_t, \diamond) by defining $L_1 \diamond L_2$ as adding L_1 and L_2 in all columns except those, which contain a last one, keeping those unchanged. $K(X_t, \diamond)$ is commutative and semisimple, since $\text{char}(K) \neq p$ and $|X_t| = \text{power of } q$. So:

$M_t = KX_t$ has a K-basis E_t consisting of primitive orthogonal idempotents e_L where $L \in X_t$.

Advantage: This new idempotent basis E_t is more adaptable to the U-module structure.
Make \(\mathcal{X}_t \) into an abelian \(p \)-group \((\mathcal{X}_t, \diamond)\) by defining \(L_1 \diamond L_2 \) as adding \(L_1 \) and \(L_2 \) in all columns except those, which contain a last one, keeping those unchanged. \(K(\mathcal{X}_t, \diamond) \) is commutative and semisimple, since \(\text{char}(K) \neq p \) and \(|\mathcal{X}_t| = \text{power of } q \). So:

\[
\text{Idempotent basis of } M_t
\]

\[
M_t = K\mathcal{X}_t \text{ has a } K \text{-basis } \mathcal{E}_t \text{ consisting of primitive orthogonal idempotents } e_L \text{ where } L \in \mathcal{X}_t.
\]

Advantage:

This new idempotent basis \(\mathcal{E}_t \) is more adaptable to the \(U \)-module structure.
Monomial action of $U^w \cap U$ on E_t

Proposition

Let $t = t^\lambda w \in RStd(\lambda)$. Then $U^w \cap U$ acts monomially on the idempotent basis $E_t = \{ e_L \mid L \in \mathcal{X}_t \}$.
Monomial action of $U^w \cap U$ on E_t

Proposition

Let $t = t^\lambda w \in RStd(\lambda)$. Then $U^w \cap U$ acts monomially on the idempotent basis $E_t = \{ e_L \mid L \in \mathcal{X}_t \}$.

Theorem

Let O be an $U^w \cap U$-orbit of E_t. Then the orbit module $M_O = K O$ is an irreducible $(U^w \cap U)$-module. Moreover M_O is U-invariant, hence it is an irreducible U-module.
Monomial action of $U^w \cap U$ on \mathcal{E}_t

Proposition

Let $t = t^\lambda w \in RStd(\lambda)$. Then $U^w \cap U$ acts monomially on the idempotent basis $\mathcal{E}_t = \{e_L \mid L \in \mathfrak{X}_t\}$.

Theorem

Let \mathcal{O} be an $U^w \cap U$-orbit of \mathcal{E}_t. Then the orbit module $M_\mathcal{O} = K \mathcal{O}$ is an irreducible $(U^w \cap U)$-module. Moreover $M_\mathcal{O}$ is U-invariant, hence it is an irreducible U-module.

Remark

We can classify these orbits and describe their sizes by “combinatorial data”.
Using those “combinatorial data”, we can prove the following conjecture for 2-part partitions:

Conjecture (Dipper, G. 2011)

Let $\lambda \vdash n$. Then there exists for each $0 \leq c \in \mathbb{Z}$ a polynomial $\ell_{c,\lambda}(t) \in \mathbb{Z}[t]$ depending only on λ, not on q such that $\ell_{c,\lambda}(q)$ is the number of irreducible direct summands of $\text{Res}_U^G(S_K(\lambda))$ of dimension q^c.
In order to prove this conjecture for 2-part partitions we use Φ_m to carry over from the permutation module $M_K(\lambda)$ to $S_K(\lambda)$. This works since the following holds:
Main result for $\lambda = (n - m, m)$

In order to prove this conjecture for 2-part partitions we use Φ_m to carry over from the permutation module $M_K(\lambda)$ to $S_K(\lambda)$. This works since the following holds:

Proposition

Φ_m preserves “combinatorial data”.

Using this and a theorem of Lyle we obtain in addition:

Theorem

For $\lambda = (n - m, m) \vdash n$, we construct an integral standard basis for $S_K(\lambda)$, reproving DJ's conjecture for 2-part partitions.

Hope: This method works for arbitrary partition $\lambda \vdash n$. Of course more tools are needed in general.
In order to prove this conjecture for 2-part partitions we use Φ_m to carry over from the permutation module $M_K(\lambda)$ to $S_K(\lambda)$. This works since the following holds:

Proposition

Φ_m preserves “combinatorial data”.

Using this and a theorem of Lyle we obtain in addition:

Theorem

For $\lambda = (n - m, m) \vdash n$, we construct an integral standard basis for $S_K(\lambda)$, reproving DJ’s conjecture for 2-part partitions.
Main result for $\lambda = (n - m, m)$

In order to prove this conjecture for 2-part partitions we use Φ_m to carry over from the permutation module $M_K(\lambda)$ to $S_K(\lambda)$. This works since the following holds:

Proposition

Φ_m preserves “combinatorial data”.

Using this and a theorem of Lyle we obtain in addition:

Theorem

For $\lambda = (n - m, m) \vdash n$, we construct an integral standard basis for $S_K(\lambda)$, reproving DJ’s conjecture for 2-part partitions.

Hope:

This method works for arbitrary partition $\lambda \vdash n$. Of course more tools are needed in general.
Applied to $\lambda = (1^n)$, $s = t^\lambda$, the unique standard λ-tableau. Similarly we can prove that U_n acts monomially on the idempotent basis corresponding to this.

Example: Idempotent in the s-batch of U_n:

$$e_L = \begin{array}{ccc}
1 & 2 & n \\
\lambda_1 & 1 & \\
\lambda_2 & \lambda_3 & 1 \\
\vdots & \vdots & \ddots \\
\lambda_n & \lambda_{n-1} & \cdots \\
\end{array} \in \mathcal{E}_s.$$
Supercharacter

Applied to $\lambda = (1^n), s = t^\lambda$, the unique standard λ-tableau. Similarly we can prove that U_n acts monomially on the idempotent basis corresponding to this.

Example: Idempotent in the s-batch of U_n:

\[
e_L = \begin{array}{cccc}
1 & 2 & \cdots & n \\
\lambda_{21} & 1 \\
\lambda_{31} & \lambda_{32} & 1 \\
\vdots & \vdots & \ddots & \ddots \\
\lambda_{n1} & \lambda_{n2} & \cdots & \cdots & 1 \\
\end{array} \in \mathcal{E}_s.
\]

Unfortunately the U_n-orbit modules are in this case not always irreducible, and their characters are called supercharacters. (André, Yan, Isaacs, Diaconis...)
Supercharacter

Applied to $\lambda = (1^n)$, $s = t^\lambda$, the unique standard λ-tableau. Similarly we can prove that U_n acts monomially on the idempotent basis corresponding to this.

Example: Idempotent in the s-batch of U_n:

$$
e_L = \begin{array}{ccc}
1 & 2 & n \\
\lambda_{21} & 1 & \\
\lambda_{31} & \lambda_{32} & 1 \\
\vdots & \vdots & \ddots & \ddots \\
\lambda_{n1} & \lambda_{n2} & \cdots & \cdots & 1 \\
\end{array} \in E_s.
$$

Unfortunately the U_n-orbit modules are in this case not always irreducible, and their characters are called supercharacters. (André, Yan, Isaacs, Diaconis...)

Facts: Supercharacters are also classified by “combinatorial datas” similarly.
Note that the unipotent Specht module $S_K(1^n)$ is the Steinberg module and its restriction to U_n is the regular representation of U_n. Using number theory we obtain: Our conjecture contains as special case the following longstanding conjectures:

Conjecture (Lehrer 1974)
The number of distinct irreducible complex characters of degree q^c of U_n is a polynomial in q with integral coefficients depending only on n not on q.

Conjecture (Higman 1960)
The number of conjugacy classes of U_n is a polynomial in q with integral coefficients depending only on n not on q.
Related conjectures

Note that the unipotent Specht module $S_K(1^n)$ is the Steinberg module and its restriction to U_n is the regular representation of U_n. Using number theory we obtain: Our conjecture contains as special case the following longstanding conjectures:

Conjecture (Lehrer 1974)

The number of distinct irreducible complex characters of degree q^c of U_n is a polynomial in q with integral coefficients depending only on n not on $q.
Note that the unipotent Specht module $S_K(1^n)$ is the Steinberg module and its restriction to U_n is the regular representation of U_n. Using number theory we obtain: Our conjecture contains as special case the following longstanding conjectures:

Conjecture (Lehrer 1974)

The number of distinct irreducible complex characters of degree q^c of U_n is a polynomial in q with integral coefficients depending only on n not on q.

Conjecture (Higman 1960)

The number of conjugacy classes of U_n is a polynomial in q with integral coefficients depending only on n not on q.
Obviously, the problem of decomposing the orbit modules of the action of U on the idempotent basis of $\text{Res}_U^G(S_K(1^n))$ turns into the problem of decomposing so called “supercharacters” of U into irreducibles.
Obviously, the problem of decomposing the orbit modules of the action of U on the idempotent basis of $\mathrm{Res}_U^G(S_K(1^n))$ turns into the problem of decomposing so called “supercharacters” of U into irreducibles.

Proposition (Dipper,G. 2012)

For $\lambda = (n - m, m) \vdash n$, $t \in \mathrm{RStd}(\lambda)$, $\mu = (1^n)$, $s = t^\mu$. Let $\mathcal{O} \subseteq \mathcal{E}_t$, $\tilde{\mathcal{O}} \subseteq \mathcal{E}_s$ be some orbits in $M_K(\lambda)$ and $M_K(\mu)$ respectively. Then the irreducible $\mathbb{C}U$-module $\mathbb{C}\mathcal{O}$ occurs as a constituent of the orbit module $\mathbb{C}\tilde{\mathcal{O}}$ if these two orbits have the same “combinatorial data”.

Not a surprise, but difficult to prove! This splits off one specific irreducible constituent from a supercharacter of U.
Obviously, the problem of decomposing the orbit modules of the action of U on the idempotent basis of $\text{Res}_U^G(S_K(1^n))$ turns into the problem of decomposing so called “supercharacters” of U into irreducibles.

Proposition (Dipper,G. 2012)

For $\lambda = (n-m, m) \vdash n$, $t \in \text{RStd}(\lambda)$, $\mu = (1^n)$, $s = t^\mu$. Let $O \subseteq \mathcal{E}_t$, $\tilde{O} \subseteq \mathcal{E}_s$ be some orbits in $M_K(\lambda)$ and $M_K(\mu)$ respectively. Then the irreducible $\mathbb{C}U$-module $\mathbb{C}O$ occurs as a constituent of the orbit module $\mathbb{C}\tilde{O}$ if these two orbits have the same “combinatorial data”.

Not a surprise, but difficult to prove! This splits off one specific irreducible constituent from a supercharacter of U.
Examples of “combinatorial data” for 2-part partitions

The orbits and their sizes (by example):

Let $\lambda = (2, 2)$, $t = \frac{1}{2} \frac{3}{4}$.

The irreducible orbit module modules occurring in the batch \mathcal{M}_t can be classified by the following idempotents:

\[
\begin{array}{ccc}
 z & 1 & 1 \\
 1 & z & 1 \\
\end{array}
\quad
\begin{array}{ccc}
 1 & 1 & 1 \\
 y & z & 1 \\
\end{array}
\quad
\begin{array}{ccc}
 y & 1 & 1 \\
 z & z & 1 \\
\end{array}
\quad
\begin{array}{ccc}
 z & 1 & 1 \\
 z & 1 & 1 \\
\end{array}
\]

where $0 \neq z, y \in \mathbb{F}_q$.
Examples of “combinatorial data”

The orbits and their sizes (by example):

Let \(\lambda = (2, 2), t = \frac{1}{2} \frac{3}{4} \).

The irreducible orbit module modules occurring in the batch \(\mathcal{M}_t \) can be classified by the following idempotents:

\[
\begin{array}{|c|c|}
\hline
z & 1 \\
\hline
1 & 1 \\
\hline
\end{array} \quad
\begin{array}{|c|c|}
\hline
1 & z \\
\hline
z & 1 \\
\hline
\end{array} \quad
\begin{array}{|c|c|}
\hline
y & 1 \\
\hline
z & 1 \\
\hline
\end{array} \quad
\begin{array}{|c|c|}
\hline
* & 1 \\
\hline
z & * \\
\hline
\end{array}
\]

where \(0 \neq z, y \in \mathbb{F}_q \).

Monomial action = putting arbitrary values of \(\mathbb{F}_q \) to \(* \)-places. Hence we obtain the dimension of the corresponding orbit respectively by:

\[
1 \quad 1 \quad 1 \quad q^2
\]
Example

$$\lambda = (4, 3), s = \frac{1}{3} \frac{2}{5} \frac{4}{6} \frac{7}{\in RStd(\lambda), 0 \neq \alpha, \beta, \gamma \in \mathbb{F}_q}$$

$\mathbf{1} \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>β</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>γ</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

$$e_L$$

$\mathbf{1} \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>β</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>γ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

$$e_{\hat{L}}$$

Then $e_L KU \leq e_{\hat{L}} KU$ (actually occurring with multiplicity 1).